Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in Synechocystis sp. Strain PCC 6803.

Identifieur interne : 000009 ( Main/Exploration ); précédent : 000008; suivant : 000010

Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in Synechocystis sp. Strain PCC 6803.

Auteurs : Yarui Cheng [République populaire de Chine] ; Tianyuan Zhang [République populaire de Chine] ; Li Wang [République populaire de Chine] ; Wenli Chen [République populaire de Chine]

Source :

RBID : pubmed:32332138

Descripteurs français

English descriptors

Abstract

Microorganisms in nature are commonly exposed to various stresses in parallel. The isiA gene encodes an iron stress-induced chlorophyll-binding protein which is significantly induced under iron starvation and oxidative stress. Acclimation of oxidative stress and iron deficiency was investigated using a regulatory mutant of the Synechocystis sp. strain PCC 6803. In this study, the ΔisiA mutant grew more slowly in oxidative-stress and iron depletion conditions compared to the wild-type (WT) counterpart under the same conditions. Thus, we performed transcriptome sequencing (RNA-seq) analysis of the WT strain and the ΔisiA mutant under double-stress conditions to obtain a comprehensive view of isiA-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed significant differences between the WT strain and ΔisiA mutant, mainly related to photosynthesis and the iron-sulfur cluster. The deletion of isiA affects the expression of various genes that are involved in cellular processes and structures, such as photosynthesis, phycobilisome, and the proton-transporting ATPase complex. Weighted gene coexpression network analysis (WGCNA) demonstrated three functional modules in which the turquoise module was negatively correlated with superoxide dismutase (SOD) activity. Coexpression network analysis identified several hub genes of each module. Cotranscriptional PCR and reads coverage using the Integrative Genomics Viewer demonstrated that isiA, isiB, isiC, ssl0461, and dfp belonged to the isi operon. Three sRNAs related to oxidative stress were identified. This study enriches our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.IMPORTANCE This study analyzed the impact of isiA deletion on the transcriptomic profile of Synechocystis The isiA gene encodes an iron stress-induced chlorophyll-binding protein, which is significantly induced under iron starvation. The deletion of isiA affects the expression of various genes that are involved in photosynthesis and ABC transporters. WGCNA revealed three functional modules in which the blue module was correlated with oxidative stress. We further demonstrated that the isi operon contained the following five genes: isiA, isiB, isiC, ssl0461, and dfp by cotranscriptional PCR. Three sRNAs were identified that were related to oxidative stress. This study enhances our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.

DOI: 10.1128/AEM.00517-20
PubMed: 32332138
PubMed Central: PMC7301839


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in
<i>Synechocystis</i>
sp. Strain PCC 6803.</title>
<author>
<name sortKey="Cheng, Yarui" sort="Cheng, Yarui" uniqKey="Cheng Y" first="Yarui" last="Cheng">Yarui Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Tianyuan" sort="Zhang, Tianyuan" uniqKey="Zhang T" first="Tianyuan" last="Zhang">Tianyuan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wenli" sort="Chen, Wenli" uniqKey="Chen W" first="Wenli" last="Chen">Wenli Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China wlchen@mail.hzau.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32332138</idno>
<idno type="pmid">32332138</idno>
<idno type="doi">10.1128/AEM.00517-20</idno>
<idno type="pmc">PMC7301839</idno>
<idno type="wicri:Area/Main/Corpus">000104</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000104</idno>
<idno type="wicri:Area/Main/Curation">000104</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000104</idno>
<idno type="wicri:Area/Main/Exploration">000104</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in
<i>Synechocystis</i>
sp. Strain PCC 6803.</title>
<author>
<name sortKey="Cheng, Yarui" sort="Cheng, Yarui" uniqKey="Cheng Y" first="Yarui" last="Cheng">Yarui Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Tianyuan" sort="Zhang, Tianyuan" uniqKey="Zhang T" first="Tianyuan" last="Zhang">Tianyuan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wenli" sort="Chen, Wenli" uniqKey="Chen W" first="Wenli" last="Chen">Wenli Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China wlchen@mail.hzau.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei</wicri:regionArea>
<wicri:noRegion>Hubei</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (MeSH)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Light-Harvesting Protein Complexes (genetics)</term>
<term>Light-Harvesting Protein Complexes (metabolism)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Synechocystis (genetics)</term>
<term>Synechocystis (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Complexes collecteurs de lumière (génétique)</term>
<term>Complexes collecteurs de lumière (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Synechocystis (génétique)</term>
<term>Synechocystis (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Light-Harvesting Protein Complexes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Iron</term>
<term>Light-Harvesting Protein Complexes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexes collecteurs de lumière</term>
<term>Protéines bactériennes</term>
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes collecteurs de lumière</term>
<term>Fer</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acclimatization</term>
<term>Gene Expression Profiling</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acclimatation</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microorganisms in nature are commonly exposed to various stresses in parallel. The
<i>isiA</i>
gene encodes an iron stress-induced chlorophyll-binding protein which is significantly induced under iron starvation and oxidative stress. Acclimation of oxidative stress and iron deficiency was investigated using a regulatory mutant of the
<i>Synechocystis</i>
sp. strain PCC 6803. In this study, the Δ
<i>isiA</i>
mutant grew more slowly in oxidative-stress and iron depletion conditions compared to the wild-type (WT) counterpart under the same conditions. Thus, we performed transcriptome sequencing (RNA-seq) analysis of the WT strain and the Δ
<i>isiA</i>
mutant under double-stress conditions to obtain a comprehensive view of
<i>isiA</i>
-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed significant differences between the WT strain and Δ
<i>isiA</i>
mutant, mainly related to photosynthesis and the iron-sulfur cluster. The deletion of
<i>isiA</i>
affects the expression of various genes that are involved in cellular processes and structures, such as photosynthesis, phycobilisome, and the proton-transporting ATPase complex. Weighted gene coexpression network analysis (WGCNA) demonstrated three functional modules in which the turquoise module was negatively correlated with superoxide dismutase (SOD) activity. Coexpression network analysis identified several hub genes of each module. Cotranscriptional PCR and reads coverage using the Integrative Genomics Viewer demonstrated that
<i>isiA</i>
,
<i>isiB</i>
,
<i>isiC</i>
,
<i>ssl0461</i>
, and
<i>dfp</i>
belonged to the
<i>isi</i>
operon. Three sRNAs related to oxidative stress were identified. This study enriches our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.
<b>IMPORTANCE</b>
This study analyzed the impact of
<i>isiA</i>
deletion on the transcriptomic profile of
<i>Synechocystis</i>
The
<i>isiA</i>
gene encodes an iron stress-induced chlorophyll-binding protein, which is significantly induced under iron starvation. The deletion of
<i>isiA</i>
affects the expression of various genes that are involved in photosynthesis and ABC transporters. WGCNA revealed three functional modules in which the blue module was correlated with oxidative stress. We further demonstrated that the
<i>isi</i>
operon contained the following five genes:
<i>isiA</i>
,
<i>isiB</i>
,
<i>isiC</i>
,
<i>ssl0461</i>
, and
<i>dfp</i>
by cotranscriptional PCR. Three sRNAs were identified that were related to oxidative stress. This study enhances our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32332138</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in
<i>Synechocystis</i>
sp. Strain PCC 6803.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00517-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00517-20</ELocationID>
<Abstract>
<AbstractText>Microorganisms in nature are commonly exposed to various stresses in parallel. The
<i>isiA</i>
gene encodes an iron stress-induced chlorophyll-binding protein which is significantly induced under iron starvation and oxidative stress. Acclimation of oxidative stress and iron deficiency was investigated using a regulatory mutant of the
<i>Synechocystis</i>
sp. strain PCC 6803. In this study, the Δ
<i>isiA</i>
mutant grew more slowly in oxidative-stress and iron depletion conditions compared to the wild-type (WT) counterpart under the same conditions. Thus, we performed transcriptome sequencing (RNA-seq) analysis of the WT strain and the Δ
<i>isiA</i>
mutant under double-stress conditions to obtain a comprehensive view of
<i>isiA</i>
-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed significant differences between the WT strain and Δ
<i>isiA</i>
mutant, mainly related to photosynthesis and the iron-sulfur cluster. The deletion of
<i>isiA</i>
affects the expression of various genes that are involved in cellular processes and structures, such as photosynthesis, phycobilisome, and the proton-transporting ATPase complex. Weighted gene coexpression network analysis (WGCNA) demonstrated three functional modules in which the turquoise module was negatively correlated with superoxide dismutase (SOD) activity. Coexpression network analysis identified several hub genes of each module. Cotranscriptional PCR and reads coverage using the Integrative Genomics Viewer demonstrated that
<i>isiA</i>
,
<i>isiB</i>
,
<i>isiC</i>
,
<i>ssl0461</i>
, and
<i>dfp</i>
belonged to the
<i>isi</i>
operon. Three sRNAs related to oxidative stress were identified. This study enriches our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.
<b>IMPORTANCE</b>
This study analyzed the impact of
<i>isiA</i>
deletion on the transcriptomic profile of
<i>Synechocystis</i>
The
<i>isiA</i>
gene encodes an iron stress-induced chlorophyll-binding protein, which is significantly induced under iron starvation. The deletion of
<i>isiA</i>
affects the expression of various genes that are involved in photosynthesis and ABC transporters. WGCNA revealed three functional modules in which the blue module was correlated with oxidative stress. We further demonstrated that the
<i>isi</i>
operon contained the following five genes:
<i>isiA</i>
,
<i>isiB</i>
,
<i>isiC</i>
,
<i>ssl0461</i>
, and
<i>dfp</i>
by cotranscriptional PCR. Three sRNAs were identified that were related to oxidative stress. This study enhances our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Yarui</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Tianyuan</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Wenli</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China wlchen@mail.hzau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045342">Light-Harvesting Protein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>148266-13-1</RegistryNumber>
<NameOfSubstance UI="C076726">chlorophyll A binding protein CP43, Cyanobacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045342" MajorTopicYN="N">Light-Harvesting Protein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046939" MajorTopicYN="N">Synechocystis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">WGCNA</Keyword>
<Keyword MajorTopicYN="Y">coexpressed genes</Keyword>
<Keyword MajorTopicYN="Y">iron deficiency</Keyword>
<Keyword MajorTopicYN="Y">isi operon</Keyword>
<Keyword MajorTopicYN="Y">oxidative stress</Keyword>
<Keyword MajorTopicYN="Y">transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32332138</ArticleId>
<ArticleId IdType="pii">AEM.00517-20</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00517-20</ArticleId>
<ArticleId IdType="pmc">PMC7301839</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Jul 5;1143(2):113-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8318516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34983</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rev Mar Sci. 2013;5:217-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22881354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 1995 Aug 31;2(4):153-66, 191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8590279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Feb 7;26(3):775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2016 Jun;128(3):325-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27071628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 May 10;19(1):357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29747589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Met Ions Life Sci. 2013;12:241-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23595675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jan;29(1):24-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 1996 Jun 30;3(3):109-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8905231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 May 22;27(10):1425-1436.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28479323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Feb;27(3):573-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Sep;8(9):722-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17700625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2003 Dec;180(6):471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14605795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2009 Mar;33(2):258-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18834454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):7054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 May 07;16:359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25947005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Mar;16(3):334-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19219048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 25;579(11):2289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2004 Sep;49(3):192-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15386103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Jan 1;373(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jul;111(3):661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8754676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2015;69:93-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26070785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1996 Jun;142 ( Pt 6):1469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8704986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Mar 15;160(2):231-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9532742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1666-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2007 Jul-Sep;93(1-3):17-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17375369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):2045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(2):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17181779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicology. 2000 Nov 16;153(1-3):83-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Jan;74(1):90-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e60224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Jul;189(14):5075-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2016 Jan 4;15(1):266-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26652789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 20;6(4):e18753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2014 Mar;79(3):213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24821447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Aug 16;412(6848):745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11507644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2014 Aug;14(16):1895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24946113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fish Shellfish Immunol. 2011 Dec;31(6):894-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21871567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Dec 15;169(2):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 Aug;151(Pt 8):2503-2514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Nov 13;13:613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2019 Oct 4;201(21):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31405917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Aug 16;412(6848):743-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11507643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:521-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Jan 9;10(1):143-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27777125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20799968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Nov;170(11):5018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3141374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2013 Oct;9(10):2565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23942477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Feb;1837(2):217-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):992-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531492</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cheng, Yarui" sort="Cheng, Yarui" uniqKey="Cheng Y" first="Yarui" last="Cheng">Yarui Cheng</name>
</noRegion>
<name sortKey="Chen, Wenli" sort="Chen, Wenli" uniqKey="Chen W" first="Wenli" last="Chen">Wenli Chen</name>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<name sortKey="Zhang, Tianyuan" sort="Zhang, Tianyuan" uniqKey="Zhang T" first="Tianyuan" last="Zhang">Tianyuan Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32332138
   |texte=   Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in Synechocystis sp. Strain PCC 6803.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32332138" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020